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Abstract

In this short note, a general methodology for multidimensional extrapolation is presented. The approach assumes a

level set function exists which separates the region of known values from the region to be extrapolated. It is shown that

arbitrary orders of polynomial extrapolation can be formulated by simply solving a series of linear partial differential

equations (PDEs). Examples of constant, linear and quadratic extrapolation are given.
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1. Introduction

In many fields of computational physics, it is often required to extrapolate a function from a region

where it is known to a region where it is unknown. Examples include the Ghost Fluid Method (GFM) [2–4],

where one needs to extrapolate data from a ‘‘real’’ region to a ‘‘ghost’’ region, image processing [10] and

level set methods [5–7]. Here, a general methodology for multidimensional extrapolation is presented. The

basic method stems from the constant extrapolation method presented in [2] and earlier in [1].
2. Mathematical formulation

2.1. Constant extrapolation

Here, we have a function, u, which is defined only in a portion of space, and we would like to extrapolate

it into the remaining areas of space. We assume there exists a level set function, w, such that w6 0 defines

the region where u is known, and w > 0 is the region where u needs to be extrapolated. Typically w will be
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the signed distance function from the interface, C, of known/unknown regions of u. Here, we wish to ex-

trapolate values of u defined at w ¼ 0 into the region w > 0. In this section, the extrapolation of the

function u is done as a constant along a normal, n̂n, which is perpendicular to the interface, C. This normal is

defined everywhere in space by

n̂n ¼
~rrw

j ~rrwj
: ð1Þ

The PDE used to achieve constant extrapolation [1,2] is

ou
ot

þ HðwÞn̂n � ~rru ¼ 0; ð2Þ

where HðwÞ is the unit Heaviside function

HðwÞ ¼ 1 if w > 0;
0 if w6 0:

�
ð3Þ

Note that the Heaviside function is used simply to not disturb the known values of u in the region w6 0.

In the region w > 0, Eq. (2) has the following properties: (1) It is a linear hyperbolic PDE in u. (2) It has
characteristics that are along the direction of n̂n. (3) The PDE will become steady a distance x away from C
at time equal to that distance (because the characteristic wave speed is unity). (4) Once the PDE is steady,

then we have n̂n � ~rru ¼ 0, which yields that u will be constant along the characteristic direction, n̂n.
So, to achieve constant extrapolation (in the normal direction), one can simply solve Eq. (2) to steady

state. Furthermore, many applications, such as GFM, only require a narrow band of points near C to be

populated, so Eq. (2) would only need to be solved for a few time steps.
2.2. Linear extrapolation

Here, we wish to use linear extrapolation in the normal direction. This is done in a series of steps. First,

define the directional derivative of u in the normal direction as

un ¼ n̂n � ~rru: ð4Þ

Note that this is only done in the region w6 0, where u is defined. Now, this scalar function can be ex-

trapolated in a constant manner into the region w > 0 via the PDE:

oun
ot

þ HðwÞn̂n � ~rrun ¼ 0: ð5Þ

Note that structurally, this PDE is the same as Eq. (2). Again, this is solved until steady state. Once we have
the directional derivative everywhere in the region w > 0, then we can solve for the function u itself

ou
ot

þ HðwÞðn̂n � ~rru� unÞ ¼ 0: ð6Þ

Note that this PDE also has same characteristic properties as Eq. (2), but now instead of u going to a

constant along the normal direction, it will tend to have a directional derivative equal to un which had
previously, through Eq. (5), been extrapolated itself from C. Note that un appears as a source term, similar

in nature to the ‘‘reinitialization’’ PDE used in [9].
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2.3. Quadratic extrapolation

Here, we wish to use quadratic extrapolation in the normal direction. This is also done in a series of

steps. First, define the second directional derivative of u in the normal direction as

unn ¼ n̂n � ~rrðn̂n � ~rruÞ: ð7Þ

Again, this is only done in the region w6 0, where u is defined. Now, this scalar function can be extrap-

olated in a constant manner into the region w > 0 via the PDE

ounn
ot

þ HðwÞn̂n � ~rrunn ¼ 0: ð8Þ

Note the same structure as Eq. (2). Again, this is solved until steady state. Once we have the second di-

rectional derivative everywhere in the region w > 0, then we can solve for the first directional derivative un
via the PDE

oun
ot

þ HðwÞðn̂n � ~rrun � unnÞ ¼ 0: ð9Þ

Note that this PDE also has same characteristic properties as Eq. (6), but now instead of un going to a constant
along the normal direction, it will tend to have a directional derivative equal to unn which had previously,

through Eq. (8), been extrapolated itself from C. Once again, now that we have un, we can now solve

ou
ot

þ HðwÞðn̂n � ~rru� unÞ ¼ 0 ð10Þ

to obtain the function u. Note that Eqs. (10) and (6) are identical, only the source term un is different.

2.4. Higher-order extrapolation

The pattern is clear to extend this method to higher-order polynomial extrapolation methods. First, one

would compute the Nth-order directional derivative of u in the region w6 0. Then this would be extrap-
olated in a constant fashion. Then, each successive lower-order directional derivative would be integrated

until u is calculated. Next, the numerical implementation is discussed.
3. Numerical implementation

Here, we will outline the numerical methods needed to perform the various extrapolation methods of the

previous section. In particular, a uniform Cartesian grid is used to discretize the domain x 2 ðxmin; xmaxÞ, with
Nx þ 1 and y 2 ðymin; ymaxÞ, with Ny þ 1 equally spaced nodes (for simplicity it is further assumed that the grid

spacing in each dimension are equal, i.e., Dx ¼ Dy). For each of the PDEs being solved, a method of lines

approach will be taken. In particular for the examples given in the following sections, a second-order Runge–

Kutta (R–K) time integration will be used in conjunction with a second-order upwind spatial discretization.

See [8] for implementation details. Some specific details for each extrapolation method are given next.

3.1. Constant extrapolation

For constant extrapolation in the normal direction, one only needs to solve Eq. (2) with u and w given.

The normal components, nx and ny , are computed with standard second-order accurate central differences.
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Once these are defined, then Eq. (2) is simply solved with second-order upwind (MinMod) spatial dis-

cretization and second-order R–K time discretization.
3.2. Linear extrapolation

Here, there are two PDEs to be solved. The first, Eq. (5), needs un as initial data. Note that since u may

only be given in the region w6 0, un can only be computed in the region w6 � Dx. Eq. (4), in two di-

mensional Cartesian coordinates becomes

un ¼ n̂n � ~rru ¼ nx
ou
ox

þ nx
ou
oy

; ð11Þ

where all derivatives are computed by second-order central differences. Now we have initial conditions for

un in the region w6 � Dx. Now Eq. (5) is slightly modified numerically to account for the fact that there is
no well defined un in the region w > �Dx

oun
ot

þ Hðwþ DxÞn̂n � ~rrun ¼ 0: ð12Þ

Once this PDE is solved to steady state (again using the same second-order upwind method), we then solve

Eq. (6) to steady state. Note that we use the results of the previous, steady-state solution of un in this PDE.

Also note that the Heaviside function need not be modified in this PDE, since un will be well set everywhere,
and u is defined right up to w ¼ 0.
3.3. Quadratic extrapolation

Here, we need unn as initial data, which in two dimensions becomes

unn ¼ n2x
o2u
ox2

þ nx
ou
ox

onx
ox

þ 2nxny
o2u
oxoy

þ nx
ou
oy

�
þ ny

ou
ox

�
onx
oy

þ n2y
o2u
oy2

þ ny
ou
oy

ony
oy

: ð13Þ

Note that the above equation also uses second-order central differences. In particular the cross-derivative
o2u=oxoy is needed. Again, if u is only given in w6 0, then we can only compute unn in the region

w6 �
ffiffiffi
2

p
Dx. So, we modify Eq. (8) to

ounn
ot

þ Hðwþ
ffiffiffi
2

p
DxÞn̂n � ~rrunn ¼ 0 ð14Þ

and solve to steady state. At this point, we then compute un in the same fashion as in the previous section,

and solve Eq. (12) to steady state for un, and finally solve Eq. (6) to steady state for u.
4. Numerical examples

Here, examples are given from the constant, linear and quadratic extrapolation cases. The computa-

tional domain is a square: ð�p; pÞ � ð�p; pÞ, with a level set function w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� 2. The function to be

extrapolated is given initially by

u ¼ 0 if w > 0;
cosðxÞ sinðyÞ if w6 0:

�
ð15Þ
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Fig. 1. (a) Initial conditions for u (0.2 incremental contours) and (b) w ¼ 0 contour.
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Fig. 2. (a) Constant, (b) linear and (c) quadratic extrapolation results (0.2 incremental contours); dashed contour is w ¼ 0.
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Table 1

Numerical accuracy for constant extrapolation

Dx ¼ Dy E1 R1 E1 R1 Eavg-band Ravg-band E1-band R1-band

p=100 3.78� 10�1 3.13� 10�2 1.41� 10�2 3.13� 10�2

p=200 1.75� 10�1 1.12 1.52� 10�2 1.04 6.53� 10�3 1.11 1.52� 10�2 1.04

p=400 8.94� 10�2 0.96 7.57� 10�3 1.01 3.51� 10�3 0.89 7.57� 10�3 1.01

p=800 4.50� 10�2 0.99 4.24� 10�3 0.84 1.75� 10�3 1.01 4.24� 10�3 0.84

Table 2

Numerical accuracy for linear extrapolation

Dx ¼ Dy E1 R1 E1 R1 Eavg-band Ravg-band E1-band R1-band

p=100 1.00� 100 1.27� 10�1 4.85� 10-3 1.90� 10�2

p=200 4.37� 10�1 1.20 5.57� 10�2 1.19 1.08� 10�3 2.17 4.33� 10�3 2.13

p=400 2.09� 10�1 1.06 2.82� 10�2 0.98 2.65� 10�4 2.03 1.13� 10�3 1.94

p=800 1.04� 10�1 1.01 1.39� 10�2 1.02 6.72� 10�5 1.98 2.93� 10�4 1.95

Table 3

Numerical accuracy for quadratic extrapolation

Dx ¼ Dy E1 R1 E1 R1 Eavg-band Ravg-band E1-band R1-band

p=100 2.09� 100 4.27� 10�1 1.13� 10�3 4.72� 10�3

p=200 9.95� 10�1 1.07 2.09� 10�1 1.03 1.44� 10�4 2.97 6.04� 10�4 2.96

p=400 4.87� 10�1 1.03 1.01� 10�1 1.05 1.84� 10�5 2.97 7.74� 10�5 2.97

p=800 2.39� 10�1 1.03 5.19� 10�2 0.96 2.28� 10�6 3.01 9.78� 10�6 2.98
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See Fig. 1 for contour plots. Note the discontinuity in u in the initial conditions. Fig. 2 shows the results

from each of the methods as computed on a 101� 101 computational domain. Notice, in Fig. 2(a), that u is

now continuous across w ¼ 0, although there is a discontinuity in derivative at w ¼ 0. In Fig. 2(b) the

function and its derivative are continuous across w ¼ 0. Fig. 2(c) shows the quadratic result which is also

has continuity in its second derivative across w ¼ 0. Further resolutions were conducted up to 801� 801

grids, and first-order convergence, in the L1 norm, to the exact solutions was observed (the exact solution to

constant, linear and quadratic extrapolation in the normal direction can be carried out for this case due to

the relatively simple w ¼ 0 surface). The first-order nature of the convergence is intimately linked to the
discontinuous behavior of HðwÞ. Both lower order (first-order) and higher-order (fifth-order weighted

ENO) were also tested with similar errors in the L1 norm. Even though globally only first-order results are

achieved, it is usually more important, for example in GFM, to get smoothness near w ¼ 0. Examining the

error within 3Dx of w ¼ 0, yielded higher rates of convergence. For example, the MinMod method achieves

third-order rates of convergence to the exact solution in the quadratic extrapolation case, second order for

the linear case and first order for the constant case. See Tables 1–3 for the global L1 and L1 errors using the

MinMod method, as well as average, Lavg-band and L1-band errors in the 3Dx band of points near w ¼ 0. The

results indicate that in the narrow band near w ¼ 0 the rates of convergence are proportional to the order of
extrapolation, which is the desired goal.

As a note, if one is only interested in extrapolating into a narrow band of Nx points then solving the

PDEs for 10� Nx will typically ensure that the solution is steady in the narrow band. But one may want to

do checks on steadiness in the narrow band to ensure proper rates of convergence are achieved.
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